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Abstract— Wind turbines can become damaged during operation, and wind turbine blades are especially susceptible. Machine 

learning algorithms are often used to classify images, and these images are commonly processed prior to their use. One of these 

preprocessing methods is edge detection, which isolates the areas of an image that contain high-frequency information, such as edges. 

This paper explores the effect of applying edge detection as a preprocessing method for machine learning algorithms trained to classify 

defects in images of wind turbine blades. Specifically, edge detection is applied to the Xception and VGG19 convolutional neural 

networks. Conclusions as to the efficacy of edge detection as a preprocessing method for this type of data are drawn by comparing the 

classical performance of the selected machine learning algorithms to the performance of the same algorithms after implementing edge 

detection. If found to be successful, this technique can be used to improve automated detection of faulty wind turbines, which has 

implications for the reduction of energy and revenue loss at wind farms due to wind turbine downtime. 

 

Index Terms— Deep learning, edge detection, VGG19, wind turbine, Xception. 

 

I. INTRODUCTION 

The demand for renewable energy has increased. This is 

especially true of renewable energy generated from wind 

through wind farms. In the last three years (2020-2022), wind 

power has experienced its top three years of growth in history 

[1]. This conversion of wind energy to sustainable electricity 

is accomplished using wind turbines. Despite the increased 

popularity of the energy produced by these machines, wind 

turbines are susceptible to damage, especially by the 

environment they reside in [2, 3, 4]. The blades of the wind 

turbine are no exception. In a survey studying over 1,000 

wind turbines across a period of fifteen years, the wind 

turbine blades were found to cause over 5% of wind turbine 

failures; failures such as these can result in downtimes greater 

than ten days [5, 6].  

Wind turbine failures and downtime can be prevented by 

condition monitoring. Unmanned aerial vehicles and 

autonomous drones are a growing area of interest in industry 

and academia for addressing this need [7, 8, 9, 10]. Machine 

learning has been investigated through algorithms such as 

support vector machines (SVMs) and convolutional neural 

networks (CNNs) as a successful method to enable these 

vehicles to perform condition monitoring without human 

intervention [11, 12, 13]. One of the key aspects of condition 

monitoring is the identification of cracks and other defects on 

a wind turbine's blades. This research aims to evaluate the 

efficacy of edge detection, a data preprocessing method, for 

wind turbine blade crack detection by comparing the 

performance of Xception and VGG19, two common CNN 

architectures, implementing this preprocessing stage to the 

classical performance of those architectures on a dataset 

containing 6,000 images of healthy and faulty wind turbine 

blades. If successful, this method will increase the accuracy 

of machine learning architectures in detecting defects on 

wind turbine blades and thus benefit the field of autonomous 

condition monitoring of wind turbines. 

 In the remainder of this paper, the methodology guiding 

the evaluation process of edge detection is explained in 

Section II, the results are presented in Section III, and 

conclusions are drawn and recommendations made in Section 

IV. 

II. METHODOLOGY 

Edge detection will be evaluated by training the Xception 

and VGG19 CNN architectures on a dataset containing 

images of healthy and faulty wind turbine blades. An 

overview of this process is provided in Fig. 1. This section 

presents an elaboration on the Xception and VGG19 CNN 

architectures, the wind turbine dataset, edge detection, and 

the procedure used to evaluate edge detection as a data 

preprocessing method. 

A. Xception 

Xception is an implementation of the CNN. CNNs are 

neural networks consisting of pooling, fully-connected, and 

convolutional layers. Each layer is connected to the layers 

directly preceding and following it, and each layer is formed 

from weight-storing nodes. These weights are gradually 

updated during the model training process and enable the 

model to make inferences on new data. Each type of layer 

performs specific functionality. The pooling layer reduces 

the size of data it receives, and the fully-connected layer 

implements a mapping of each input node with all of the 
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nodes on its output. The namesake of the CNN is the 

convolutional layer. It performs the convolution operation on 

the matrix of 2-dimensional (2D) data it receives. During this 

operation, the elementwise (Hadamard) product is computed 

between every region of the input data and another 2D matrix 

known as the kernel. The summation of all elements of the 

resulting matrix constitutes an entry in the convolutional 

layer's output feature map. The full feature map is formed as 

this operation is repeated for every region of the input matrix 

[14]. 

 

 
Fig. 1. Implementation, training, and performance of Xception and VGG19 machine learning algorithms with and without 

edge detection preprocessing. 

The core idea distinguishing Xception from other CNNs is 

the Xception module, which replaces the typical 

convolutional layer. This module implements layers 

performing depthwise separable convolution, which 

separates the computation of spatial and cross-channel 

correlations. Xception also includes residual connections 

between layers [15]. A visualization of the Xception 

architecture as implemented in this paper is shown in Fig. 2. 

 
Fig. 2. Structure of the Xception architecture implemented in 

this reserch. 

B. VGG19 

VGG19 is another implementation of the CNN. The VGG 

network is one of the two CNN architectures explored in this 

paper, a fundamental yet renowned machine learning 

algorithm introduced by Andrew Zisserman and Karen 

Simonyan [16]. The VGG model analyzes the depth of layers 

using a relatively small convolutional filter size (3 × 3) [17]. 

The pre-trained Visual Geometry Group model 19 (VGG19) 

was trained on the ImageNet database of roughly 14,197,122 

images that are categorized according to the WordNet 

hierarchy. All images in this dataset are RGB with size 224 × 

224 [18]. The pre-trained model serves as a base for which 

wind turbine fault image processing can be added to   the 

classifier. 

The first sixteen layers of VGG19 are convolution layers, 

and the last three layers are dense or fully connected layers 

[18]. Five blocks of convolution are present in VGG19. Each 

block is combined with one MaxPool Layer. Block 1: The 

depth of filters is 64 with two convolution layers. Block 2: 

The depth of filters is 128 with two convolution layers. Block 

3: The depth of filters is 256 with four convolution layers. 

Block 4 and Block 5: The depth of filters is 512 with four 

convolution layers [19]. The model uses kernels of size (3 × 3) 

with a stride size of one pixel, which allows the entire 

construct of each image to be covered. Spatial padding is 

used to preserve the spatial resolution of the image, and max 

pooling is performed over a (2 × 2) pixel window with a 

stride of 2. A rectified linear unit (ReLU) layer introduces 

non-linearity after those mentioned previously. This allows 

the model to classify more effectively, and it improves 

computational and running time. Three fully connected 

layers are used at the end: the first two are of size 4096; the 

third contains 1000 channels. Finally, a softmax function 

layer completes the architecture. The architecture of the 

model is summarized in detail in Table I [20]. 
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Table I. Vgg19 Layers Architecture. 

Layer # Layer Details Layer # Layer Details 

1 Conv3x3 (64) 11 Conv3x3 (512) 

2 Conv3x3 (64) 12 Conv3x3 (512) 

- MaxPool - MaxPool 

3 Conv3x3 (128) 13 Conv3x3 (512) 

4 Conv3x3 (128) 14 Conv3x3 (512) 

- MaxPool 15 Conv3x3 (512) 

5 Conv3x3 (256) 16 Conv3x3 (512) 

6 Conv3x3 (256) - MaxPool 

7 Conv3x3 (256) 17 Fully Connected 

(4096) 

8 Conv3x3 (256) 18 Fully Connected 

(4096) 

- MaxPool 19 Fully Connected 

(1000) 

9 Conv3x3 (512) - SoftMax 

10 Conv3x3 (512) - - 

C. Dataset 

In order to train the Xception and VGG19 CNNs on wind 

turbine defect classification and to evaluate the impact of 

edge detection as a data preprocessing method, a dataset of 

healthy and faulty wind turbine blades was created. In both 

categories, the subject of the image is a small-scale wind 

turbine prototype assembled at Utah Valley University 

(UVU). In total, the dataset contains 6,000 red-green-blue 

(RGB) images, of which 3,000 belong to the healthy class, 

and the other 3,000 belong to the faulty class. Wind turbine 

blades in the faulty class of images are distinguished from 

those in the healthy class by artificially generated defects 

including cracks, erosion, and holes. Additionally, both 

classes contain images captured outside using a Zenmuse L1 

RGB camera connected to a DJI Matrice 300 RTK drone 

where the blades are mounted on the wind turbine prototype. 

Images are also included in the dataset that were captured 

inside with the blades isolated from the wind turbine 

prototype. 

For training and evaluation, each image in the dataset was 

downscaled to a size of 300 × 300. This had the effect of 

decreasing the training time of the CNN models without 

impacting the performance comparison between the standard 

models and the models modified with the edge detection 

preprocessing technique. Furthermore, the dataset was 

divided into training, testing, and validation subsets: 4,200 

images were allocated for the training subset, 1,200 for the 

testing subset, and 600 for the validation dataset. This 

allowed the evaluation of edge detection to proceed using 

fresh data previously unseen by the models. This process will 

be described in detail in Section II-E. 

A sample of the wind turbine dataset is provided in Fig. 3 

Particularly, Fig. 3(a) contains images from the healthy class 

of wind turbine blades, and Fig. 3(b) contains images from 

the faulty class. The two leftmost images in each category are 

taken from the subset of images captured outside; the 

rightmost images are from the subset captured inside. 

D. Edge Detection 

Edge detection is a class of algorithms that approximate 

the magnitude of an image's gradient. As a result, these 

algorithms output a 2D matrix where each element is a value 

between 0 and 1 and corresponds to the rate of change of the 

pixel intensity in the original image at that point. Values 

closer to 0 in the output matrix indicate a location in the 

original image with slowly changing features while values 

closer to 1 indicate a location with features changing more 

quickly. This means that edges in the original image, which 

are locations that experience sudden changes in pixel 

intensity, have higher values in the output matrix; the other, 

non-edge pixels have lower values. 

Many algorithms exist for edge detection calculation: this 

research implements the Roberts cross operator through the 

scikit-image Python library for its computational simplicity. 

In this algorithm, the original image is convolved with two 

kernels: the positive diagonal kernel given in (1) and the 

negative diagonal kernel given in (2). Afterwards, the 

resulting matrices are combined to form the final output 

matrix using (3), where Ep is the matrix resulting from the 

convolution of the original image with (1), En is the matrix 

resulting from the convolution of the original image with (2), 

and E is the matrix output from the edge detection algorithm 

[21]. 

 

This algorithm requires a 2D matrix; however, the wind 

turbine dataset was captured in RGB format. This requires a 

3D matrix, as the extra dimension is used to store information 

from the red, green, and blue data channels. To convert the 

dataset to a usable form, the dataset images were processed 

using (4) prior to entering the edge detection algorithm. In 

this equation, R is the 2D matrix of red-channel data from the 

original image, G is the green-channel data, B is the 

blue-channel data, and S is the 2D output matrix representing 

the converted grayscale image [21]. The resulting grayscale 

image consists of pixels that have an intensity that is 

equivalent to the intensity of the pixels in the original image. 
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For the purposes of evaluation, a copy of the captured wind 

turbine dataset was processed using edge detection, and 

training and evaluation occurred on this new, static dataset. 

Fig. 3(c) and Fig. 3(d) sample images from the respective 

Healthy and Faulty image classes from the edge detection 

dataset. In a real-time wind turbine condition monitoring 

system, this edge detection algorithm could be added to the 

beginning of a CNN architecture as a new layer to perform 

edge detection preprocessing dynamically on every image 

that enters the model for classification. 

E. Evaluation Procedure 

To evaluate edge detection preprocessing for use in wind 

turbine health classification by CNNs, parameters within the 

network, known as hyperparameters, were first identified that 

could be tuned to increase the performance of each CNN. 

These included each respective CNN's batch size, loss 

function, optimizer type, activation function, and dropout 

ratio. The batch size represents the amount of data that is 

allowed to pass through the CNN during training before the 

model's weights are updated. Smaller batch sizes suffer from 

noise due to the model’s weights being frequently updated; 

this noise can cause a CNN not to converge on optimal 

weights during training. In larger batch sizes, the effects of 

noise are minimized, but the model is more likely to be 

trapped with non-optimal weights. 

The loss function computes the error margin between the 

model's output and the correct output during training. The 

optimizer is used to update the model weights during training 

to increase the model's accuracy by traversing the gradients 

output by the loss function. The activation function imposes 

non-linear behavior on the values passed between the layers 

of the architecture. The dropout ratio is used to prevent the 

CNN from overfitting during training. It is a measure of the 

percentage of nodes in the architecture that are deactivated 

during training, which forces the CNN to continuing 

identifying new patterns as it is trained. For all of these 

hyperparameters, proper values must be found that balance 

the trade-offs for each hyperparameter on the specific dataset 

used for training. This occurs during hyperparameter tuning. 

In this research, the KerasTuner software was used to identify 

and tune these hyperparameters [22]. 

After tuning the hyperparameters, the optimal values 

found are fixed for use during the training of the CNN model. 

This is where the model weights are updated and the CNN 

learns the relationships of the training data to enable 

successful inference on future, unseen data. The training was 

accomplished using the Keras software, which was also used 

to programmatically define the Xception and VGG19 

architecture [23]. 

 
Fig. 3. Selected images from the wind turbine dataset (6,000 

images) captured at Utah Valley University (UVU) using a 

small-scale wind turbine prototype. Samples are shown for 

both the original RGB dataset and the corresponding images 

modified by edge detection preprocessing. 

To enhance the training and evaluation process, the wind 

turbine dataset was subdivided into three separate datasets: 

one used for training, one for testing, and one for validation. 

The training subset was used exclusively during model 

training, and the testing dataset was used to periodically 

evaluate progress during training on fresh data. The 

validation subset was used only for final evaluation after the 

training process was completed. This ensures the results are 

only based on inferences: they aren't biased with data already 

learned during training. 

To evaluate the results, each network architecture was 

independently trained ten times using the hyperparameters 

identified during hyperparameter tuning. This allowed the 

average performance to be calculated, which more accurately 

represents the performance obtainable if these architectures 

were to be trained and implemented for an autonomous wind 

turbine condition monitoring system. After each independent 

training session, a confusion matrix was generated. This 
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represents results in terms of true positive, true negative, false 

positive, and false negative. True positive inferences are 

where the model correctly classified an image as, in this case, 

a healthy blade. True negative inferences are where the 

model correctly classified an image as containing a faulty 

blade. A false positive inference means the model incorrectly 

classified a faulty blade as healthy, and a false negative 

means a healthy blade was incorrectly classified as faulty. 

A variety of statistics can be derived from a confusion 

matrix. This research focuses on accuracy, precision, hit rate, 

miss rate, specificity, fall-out, and F1 score. Accuracy 

represents the ratio of correct inferences to the total number 

of inferences. Precision is the ratio of correct healthy 

inferences to the total number of healthy inferences while hit 

rate is the ratio of correct healthy inferences to the total 

number of healthy images. On the other hand, the miss-rate is 

the ratio of incorrect faulty inferences to the total number of 

healthy images. Additionally, specificity is the ratio of 

correct faulty inferences to the total number of faulty images, 

and fall-out is the ratio of incorrect healthy inferences to the 

total number of faulty images. F1 score is the harmonic mean 

of precision and hit rate. This means ideal models possess 

larger values of accuracy, precision, hit rate, specificity, and 

F1 score and lower values of miss rate and fall-out. All values 

are real numbers and range from 0 to 1. For each of the ten 

independent training sessions, these statistics were derived 

from the corresponding confusion matrix. The final statistics 

used for evaluation are the averages of these statistics from 

each of the ten training sessions. 

The process of tuning hyperparameters, training the model, 

and deriving average results was repeated for each dataset – 

the original RGB dataset, the dataset processed with edge 

detection, and the portion of the edge detection dataset 

containing only images captured outdoors – and for each 

CNN architecture – Xception and VGG19. Results are 

presented in Section III. 

III. RESULTS  

Edge detection for wind turbine defect classification was 

evaluated through the average accuracy obtained by each 

selected CNN architecture when implementing edge 

detection preprocessing in comparison with the obtained 

average accuracy on the original RGB dataset unprocessed 

with edge detection. The average accuracies for the selected 

CNN architectures on the original RGB dataset are presented 

in Table II. The average accuracies obtained when edge 

detection preprocessing was implemented are given in Table 

III. Both tables are sorted by highest accuracy and include the 

average statistics described in Section II-E for reference. 

When edge detection was applied to the portion of dataset 

images captured indoors, it became evident that glare from 

the indoor lighting was problematic. After edge detection has 

been applied, cracks are virtually indistinguishable from 

lighting reflections. This is evident in the right-most image of 

Fig. 3(d) where glare is present on the upper portion of the 

blade and cracks exist on the lower portion of the blade. To 

obtain an accurate estimate of edge detection's performance, 

it was also evaluated on a subset of the original dataset: the 

portion exclusively containing images captured outdoors. 

This removes the long, narrow reflections caused by indoor 

lighting that full-scale wind turbines would not possess. 

These results are presented in Table IV. 

Table II. Average Wind Turbine Blade Defect 

Classification Performance Without Edge Detection 

Preprocessing Using Xception And Vgg19. 

Algorithm VGG19 Xception 

Accuracy 0.9867 0.9792 

Precision 0.9733 0.9709 

Hit Rate 1.0000 0.9880 

Miss Rate 0.0000 0.0120 

Specificity 0.9740 0.9703 

Fall-Out 0.0260 0.0297 

F1 Score 0.9865 0.9794 

Table III. Average Wind Turbine Blade Defect 

Classification Performance With Edge Detection 

Preprocessing Using Xception And Vgg19. 

Algorithm VGG19 Xception 

Accuracy 0.9300 0.9345 

Precision 0.8800 0.9477 

Hit Rate 0.9778 0.9200 

Miss Rate 0.0222 0.0800 

Specificity 0.8909 0.9490 

Fall-Out 0.1090 0.0510 

F1 Score 0.9263 0.9335 

Table IV. Average Wind Turbine Blade Defect 

Classification Performance With Edge Detection 

Preprocessing On Images Captured Exclusively Outdoors. 

Algorithm VGG19 Xception 

Accuracy 0.8800 0.9575 

Precision 0.7800 0.9767 

Hit Rate 0.9750 0.9380 

Miss Rate 0.0250 0.0620 

Specificity 0.8167 0.9770 

Fall-Out 0.1833 0.0230 

F1 Score 0.8667 0.9565 
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A visualization of the confusion matrices is also provided. 

These are the confusion matrices generated during the ten 

independent training sessions that possessed the highest 

accuracies `for each CNN architecture. Specifically, the top 

confusion matrices from the original RGB dataset are given 

in Fig 4, and the top confusion matrices from the dataset 

processed with edge detection are given in Fig. 5. The top 

confusion matrices from the exclusively outdoors portion of 

the edge detection dataset are provided in Fig 6. 

 

 
Fig. 4. Highest accuracy confusion matrices for wind turbine 

blade defect classification without edge detection 

preprocessing using Xception and VGG19. 

 

 
Fig. 5. Highest accuracy confusion matrices for wind turbine 

blade defect classification with edge detection preprocessing 

using Xception and VGG19. 

 

 
Fig. 6. Highest accuracy confusion matrices for wind turbine 

blade defect classification with edge detection preprocessing 

on images captured exclusively outdoors using Xception and 

VGG19. 

IV. CONCLUSIONS 

Edge detection preprocessing failed to improve the 

performance of wind turbine defect classification using 

convolutional neural networks (CNNs). In fact, it drastically 

decreased the performance. On the original RGB dataset, 

both CNN architectures performed in excess of 97% 

accuracy – VGG19 had the highest accuracy at 98.67% and 

Xception had slightly lower accuracy at 97.92%. When the 
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edge detection preprocessing algorithm was introduced, the 

accuracy for both architectures fell below 94%: Xception 

performed at 93.45% and VGG19 performed at 93.00%. This 

decrease in performance is also visible across the other 

averaged statistics. 

In the portion of the wind turbine dataset processed with 

edge detection that exclusively contained images captured 

outdoors, which was intended to mitigate unnatural glare 

from indoor lighting interfering with the edge detection 

algorithm, a similar trend is visible. The Xception 

architecture, for instance, obtained an average accuracy of 

95.75%. This is higher than the accuracy obtained on the 

edge detection dataset containing both indoor and outdoor 

images, which indicates the removal of the indoor glare did 

benefit the edge detection algorithm. However, this accuracy 

was still lower than the accuracy obtained on the original 

RGB dataset. The performance of the VGG19 architecture 

experienced a further decrease in performance: it obtained an 

average accuracy of 88.00%. The architecture being unable 

to converge on optimal weights due to the reduced size of the 

dataset resulting from the removal of images captured 

indoors is the likely cause of this decrease. 

In summary, this research evaluated the efficacy of using 

edge detection implemented through the Roberts cross 

operator to increase the performance of an autonomous wind 

turbine condition monitoring system. To meet this goal, a 

dataset of 6,000 RGB images containing healthy and faulty 

wind turbine blades was created, to which edge detection 

preprocessing was applied. Two common CNN architectures, 

Xception and VGG19, were trained on both the original RGB 

dataset and the dataset processed with edge detection to 

compare their respective performance in each scenario. The 

performance of each architecture decreased when edge 

detection was introduced. These results indicate that edge 

detection implemented through the Roberts cross operator is 

not suitable for increasing the performance of an autonomous, 

CNN-based wind turbine condition monitoring system.  
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